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Abstract
We consider the low-energy electronic properties of graphene cones in the
presence of a global Fries–Kekulé Peierls distortion. Such cones occur
in fullerenes as the geometric response to the disclination associated with
pentagon rings. It is well known that the long-range effect of the disclination
deficit-angle can be modelled in the continuum Dirac-equation approximation
by a spin connection and a non-Abelian gauge field. We show here that to
understand the bound states localized in the vicinity of a pair of pentagons
one must, in addition to the long-range topological effects of the curvature
and gauge flux, consider the effect of the short-range lattice disruption near
the defect. In particular, the radial Dirac equation for the lowest angular-
momentum channel sees the defect as a singular endpoint at the origin, and
the resulting operator possesses deficiency indices (2, 2). The radial equation
therefore admits a four-parameter set of self-adjoint boundary conditions. The
values of the four parameters depend on how the pentagons are distributed and
determine whether or not there are zero modes or other bound states.

PACS numbers: 73.63.−b, 05.30.Pr, 05.50.+q

1. Introduction

The essential features of the valence and conduction bands of planar graphene [1] can be
modelled as a pair of (2+1)-dimensional Dirac fermions, one for each of the conical band
touchings that occur at the points k = K and k = K′ in the Brillouin zone [2]. A Fries [3]
(or equivalently Clar [4]) Kekulé-structure distortion of the hexagonal graphene lattice will
couple the two Dirac points and introduce a mass gap. If the phase of the K–K′ coupling can
vary with position, there may exist topologically stable vortex textures that are associated with
zero modes and charge fractionalization [5–7].

A complex-valued K–K′ coupling is unlikely to occur spontaneously as a result of a
simple Peierls distortion—although it might be artificially engineered through the proximity-
effect coupling to vortices in a superconducting substrate [7, 8]. An alternative and naturally
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occurring form of vortex may be provided by local curvature-inducing geometric defects
such as pentagons and heptagons [9–12]. A spherical fullerene such as C60 possesses 12
pentagonal defects and, even in the absence of Kekulé distortion, its energy spectrum contains
six delocalized low-energy levels. These near-zero-energy levels have long been understood
as the lattice relicts of six exactly zero-energy modes of the continuum Dirac Hamiltonian
[13, 14]. The continuum zero-modes are those predicted by the index theorem for (2+1)-
dimensional Dirac fermions moving in a fictitious monopole magnetic field that mimics the
effect of the defects. One quarter of a Dirac unit of monopole flux threads through each of
the 12 pentagons, and for C60 this discretely-lumped field is sufficiently spread out so that the
resulting energy spectrum is well approximated by a spatially uniform field [13, 14]. There
are three units of flux altogether, and so the index theorem predicts three zero modes apiece
for the two Dirac fermion species of planar graphene.

The fictitious flux through the closed surface of the fullerene molecule means that when
the discrete lattice Hamiltonian is approximated by two continuous-space Dirac Hamiltonians,
the continuum wavefunctions must be regarded as sections of a twisted line bundle, the twist
being characterized by a Chern number of ±3. When a purely real Kekulé field is introduced
on the fullerene, the threefold twist, when coupled with a natural choice of how we introduce
the gauge holonomy, allows the real K–K′ coupling matrix elements to be perceived by the
continuum approximation as being associated with a charge-2 complex Higgs field possessing
a net winding number of six. Each pair of pentagons is then effectively a single vortex, and
each such vortex should, by the Jackiw–Rossi–Weinberg index theorem [15, 16], contain at
least one zero mode. The six low-lying ‘zero modes’ should therefore survive the introduction
of the Kekulé induced mass gap, and, in theory, its principal effect should be to localize the
previously extended states in the vicinity of the pentagonal defects.

In practice, numerical investigation of the lattice spectrum [11] shows that although the
‘zero modes’ are not immediately destroyed by the introduction of the Kekulé–Higgs field,
their energy is affected. Indeed as the ratio h of the double bond to single bond hopping
evolves from zero to large values the ‘zero-modes’ cross the finite-size gap from the negative
to the positive part of the spectrum. What was not obvious from the plots in [11] is that at
the same time the zero-mode wavefunctions evolve from being tightly localized around the
defects to being antilocalized. Thus, these modes, while still topologically interesting, are not
acting as expected from the continuum Jackiw–Rossi–Weinberg index theorem. This theorem
predicts that the energy of the zero modes will be unaltered by the introduction of the Higgs
field, and that they will be localized for any sign of the mass.

In this paper we will explore what feature of the continuum approximation to the lattice
Hamiltonian is responsible for this behaviour. We will focus on isolated pentagons and
isolated pairs of pentagons. These disinclination defects roll the sheet of graphene into a
cone. Away from the tip of the cone the geometry is locally flat and a continuum twisted
Dirac Hamiltonian approximation should be reliable. Near the tip, the exact form of the lattice
becomes important. The lattice effects can be accounted for, however, by imposing a boundary
condition on the continuum wavefunction at the tip of the cone. The result is the introduction
of a four-parameter family of self-adjoint extensions to the Dirac operator. General values of
the extension parameters explicitly break the symmetry required for the index theorem, and
suitable choices of the parameters reproduce the numerically observed phenomena.

2. Planar graphene and the Dirac equation

In order to establish our notation, we begin with a quick review of how the tight-binding
(Hückel) approximation [13] for planar graphene leads to a massive Dirac Hamiltonian. In
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Figure 1. The zero-energy reference states |A+〉, |B+〉, |A−〉 and |B−〉. The empty circles indicate
that the wavefunction is zero at those sites. The symbols η and η2 indicate that the wavefunction
takes the values η = exp(2π i/3) and η2 = η̄ = exp(−2π i/3) at that site. The heavy lines indicate
a Fries stucture of ‘double’ bonds, whose hopping will increase from t to t + δt when a Peierls
distortion occurs.

this approximation the π electrons hop on a two-dimensional honeycomb lattice with lattice
constant a. The honeycomb lattice is bipartite with the property that nearest-neighbour hopping
takes an electron from sublattice A to sublattice B, and vice versa. We denote the hopping
amplitude between nearest neighbour sites in undeformed graphene by t. A Kekulé structure
is an assignment to the lattice edges of a pattern of single and double bonds such that each
carbon atom partakes of two single bonds and one double bond. There are in general many
such assignments, but patterns that lead to a maximum number of benzene-like hexagons are
known as Fries structures. Fullerenes that possess a globally defect-free Fries structure (the
so-called leapfrog fullerenes [17]) are typically the most chemically stable. This is because
a spontaneous Peierls distortion that shortens the Fries-structure double bonds and increases
their hopping amplitude from t to t +δt will open a gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), lower the energy of
the system and give the molecule the property of having a ‘closed shell.’ Such a spontaneous
distortion occurs in C60 where the double bonds have length ∼0.1388 nm while the single
bonds have length ∼0.1432 nm [18].

The hopping Hamiltonian for the undistorted infinite lattice has four linearly independent
zero-energy eigenstates which are displayed in figure 1. The labels A and B indicate that
the non-zero amplitudes are supported on sublattice A or B respectively, and the ‘+’ and ‘−’
configurations have opposite handedness in the way that their complex phases evolve as we
circle the zero sites. Both ‘+’ configurations have the same lattice momentum k = K and
both ‘−’ configurations have lattice momentum K′. Any low energy eigenfunction will be a
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slowly varying linear combination

�(r) = fA+(r)〈r|A+〉 + fB+(r)〈r|B+〉 + fA−(r)〈r|A−〉 + fB−(r)〈r|B−〉 (1)

of these reference wavefunctions. Here r labels discrete lattice points, but since the f (r) are to
be slowly varying on the scale of the lattice they can be regarded as being smooth continuum
functions R

2 → C.
The Hamiltonian acts on the array of slowly varying functions f as

H

⎛
⎜⎜⎝

fA+

fB+

fB−
fA−

⎞
⎟⎟⎠ = 3at

2

⎛
⎜⎜⎝

0 −2∂z 0 0
2∂z̄ 0 0 0
0 0 0 2∂z

0 0 −2∂z̄ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
fA−

⎞
⎟⎟⎠ , (2)

where

∂z ≡ ∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
, ∂z̄ ≡ ∂

∂z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (3)

When the hopping is modified by the Fries–Kekulé structure shown in figure 1, the reference
states are no longer exactly zero-energy eigenfunctions. Instead H |A+〉 = δt |B−〉 and
H |A−〉 = δt |B+〉. Non-zero matrix elements, therefore, appear coupling the K Dirac point
to the K′ point

H(�)

⎛
⎜⎜⎝

fA+

fB+

fB−
fA−

⎞
⎟⎟⎠ = 3at

2

⎛
⎜⎜⎝

0 −2∂z � 0
2∂z̄ 0 0 �

� 0 0 2∂z

0 � −2∂z̄ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
fA−

⎞
⎟⎟⎠ , (4)

where � = (2/3at)δt . The derivative blocks can be written as(
0 −2∂z

2∂z̄ 0

)
= −iσ2

∂

∂x
+ iσ1

∂

∂y
= σ̃ · p, (5)

where σ̃ ≡ (σ2,−σ1) is a 90◦ rotated version of the σ = (σ1, σ2) spin vector.
We can, if we prefer, write

H(�)

⎛
⎜⎜⎝

ifA+

fB+

ifB−
fA−

⎞
⎟⎟⎠ = 3at

2

⎛
⎜⎜⎝

0 −2i∂z � 0
−2i∂z̄ 0 0 �

� 0 0 2i∂z

0 � 2i∂z̄ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ifA+

fB+

ifB−
fA−

⎞
⎟⎟⎠ , (6)

in which case the derivative blocks involve the more familiar form(
0 −2i∂z

−2i∂z̄ 0

)
= −iσ1

∂

∂x
− iσ2

∂

∂y
= σ · p. (7)

We thus reduce the Hamiltonian to an unimportant constant times

HDirac =
(

σ · p �

� −σ · p

)
. (8)

This is a two-dimensional reduction of the mass m = |�|, three-dimensional Dirac
Hamiltonian. We note that the matrix

	 =
(

σ3 0
0 −σ3

)
(9)

anti-commutes with HDirac. This reflects the fact that acting on a wavefunction by 	 inverts the
sign of the wavefunction on one of the two sublattices whilst leaving the other sublattice alone,
and that this involution takes an eigenfunction of energy E to one of −E. Zero energy states
can be chosen so that they are eigenvectors of 	, and the number of +1 eigenvalues minus the
number of −1 eigenvalues is related to topological data by the Jackiw–Rossi–Weinberg index
theorem.
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Figure 2. Cutting out a 60◦ wedge and reconnecting the severed bonds leaves a pentagon
disclination. When the apex of the wedge lies in a hexagon with no double bonds, single bonds
reconnect to single bonds and double bonds to double bonds, leaving a globally consistent Fries–
Kekulé structure.

3. Geometric defects and their gauge field

We insert a pentagon disclination into the lattice by cutting out a 60◦ wedge and rejoining
the severed bonds. We wish to preserve the global Fries–Kekulé pattern, so the apex of the
removed wedge must lie in a hexagon with no double bonds (see figure 2). In order for the
lattice wavefunction to join smoothly across the seam of new bonds, the coefficient functions
on the original lattice must obey the boundary conditions [9, 10]⎛

⎜⎜⎝
fA+

fB+

fB−
fA−

⎞
⎟⎟⎠

R

=

⎛
⎜⎜⎝

0 0 η̄ 0
0 0 0 η

η̄ 0 0 0
0 η 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
fA−

⎞
⎟⎟⎠

L

. (10)

Here the subscript R means the value to the right of the cut, and L to the left. In order to deal with
this transformation it is convenient to change basis so that � = (fA+, fB+, fB−,−fA−)T .This
makes ± kinetic energy blocks become identical

H

⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −2∂z � 0
2∂z̄ 0 0 −�

� 0 0 −2∂z

0 −� +2∂z̄ 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠ (11)

at the expense of complicating the mass terms. We can write the Hamiltonian matrix compactly
as

H = (I ⊗ σ̃) · p + �τ1 ⊗ σ3, (12)

where the I and τ1 matrices act on the two-by-two blocks (i.e. in the K–K′ space) and the σ

matrices act between the A and B sublattices within each K, K′ block . (In the following we
will omit the I matrices when no ambiguity results.)

5
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In the new basis, the operator 	 that anti-commutes with H remains

	 = τ3 ⊗ σ3 ≡
(

σ3 0
0 −σ3

)
.

The boundary condition, however, becomes⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠

R

=

⎛
⎜⎜⎝

0 0 η̄ 0
0 0 0 −η

η̄ 0 0 0
0 −η 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠

L

. (13)

This can be factored as

�R = −iτ1 ⊗ exp{−iπσ3/6}�L

= exp{−iπτ1/2} ⊗ exp{−iπσ3/6}�L. (14)

As before, the τ1 matrix acts on the ± valley-degeneracy ‘flavour’ indices and the σ matrices
on the A,B ‘spin’ indices.

Similarly, cutting out a 120◦ wedge turns a hexagon into a square, and requires⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠

R

=

⎛
⎜⎜⎝

η 0 0 0
0 η̄ 0 0
0 0 η 0
0 0 0 η̄

⎞
⎟⎟⎠

⎛
⎜⎜⎝

fA+

fB+

fB−
−fA−

⎞
⎟⎟⎠

L

(15)

which can be factored as

�R = −I ⊗ exp{−iπσ3/3}�L

= exp{−iπτ1} ⊗ exp{−iπσ3/3}�L. (16)

In this last line, the τ1 matrix in the exponent can be replaced by τ2, τ3, or even by I, without
altering the lattice boundary condition. The authors of [11] elected to take this matrix to be
τ3 as this choice leads to a continuum Hamiltonian for which the symmetry required by the
Jackiw–Rossi–Weinberg index theorem appears manifest.

We can remove the discontinuity across the 60◦ wedge by writing

�(r, θ) = exp

{
i
π

2
τ1

(
3θ

5π

)}
⊗ exp

{
i
π

6
σ3

(
3θ

5π

)}
�̃(r, θ), (17)

and across the 120◦ wedge by writing

�(r, θ) = exp

{
iπτ1

(
3θ

4π

)}
⊗ exp

{
i
π

3
σ3

(
3θ

4π

)}
�̃(r, θ). (18)

Again, in the second case, we may replace the τ1 matrix by τ2, τ3 or I. In all cases, the new field
�̃(r, θ) is continuous across the reconnected seam. In the first case the angle θ is restricted
to the range −π/6 < θ < 3π/2, with the limiting values representing the same point on the
graphene cone, and in the second π/6 < θ < 3π/2.

We wish to write the eigenvalue problem in polar coordinates whose origin is at the tip of
the cone. To do this we use the identity

H = σ̃ · p + �τ1 ⊗ σ3

= −i{σ̃1 cos θ + σ̃2 sin θ} ∂

∂r
− i{−σ̃1 sin θ + σ̃2 cos θ}1

r

∂

∂θ
+ �τ1 ⊗ σ3

= e− i
2 σ3θ

(
−iσ̃1

∂

∂r
− iσ̃2

1

r

(
∂

∂θ
− i

2
σ3

)
+ �τ1 ⊗ σ3

)
e

i
2 σ3θ . (19)
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The coefficients of the derivatives σr,θ ≡ σ̃1,2 are now matrix-valued constants, but they
pay for their constancy by being attached to a moving zweibein frame er , eθ . The −iσ3/2
spin connection is therefore required to cancel the effect of taking the frame-rotation matrix
exp {iσ3θ/2} through the θ derivative.

For planar graphene we would now define a new field χ(r, θ) = e
i
2 σ3θ�(r, θ) and find

that it is antiperiodic under θ → θ + 2π . Because of the deleted wedge, however, we have to
define

χ(r, θ) = exp

{
iσ3

(
1

2
+

1

10

)
θ

}
�̃(r, θ), (20)

which is antiperiodic under θ → θ + 2π (5/6). Taking into account equation (17), the
eigenvalue problem H� = E� for the 60◦ wedge can now be written as(

−iσ̃1
∂

∂r
− iσ̃2

1

r

(
∂

∂θ
− i

2
σ3 +

3i

10
τ1

)
+ �τ1σ3

)
χ(r, θ) = Eχ(r, θ). (21)

Here the iτ1(3/10) gauge connection comes from taking the exp {iτ1(3/10)θ} matrix appearing
in equation (17) through the θ derivative. For the 120◦ wedge we must set,

χ(r, θ) = exp

{
iσ3

(
1

2
+

1

4

)
θ

}
�̃(r, θ), (22)

which is antiperiodic under θ → θ + 2π (2/3). The corresponding eigenvalue problem
becomes (

−iσ̃1
∂

∂r
− iσ̃2

1

r

(
∂

∂θ
− i

2
σ3 +

3i

4
τ1

)
+ �τ1σ3

)
χ(r, θ) = Eχ(r, θ). (23)

From now on, for purely cosmetic reasons, we will make the rotation introduced in (6)
that removes the tildes from the σ1,2 matrices. This does not affect the gauge fields, as they
act in the valley degeneracy ‘flavour’ space and the redefinition acts in the A-B ‘spin’ space.

We define a new angle φ = (6/5)θ , or φ = (3/2)θ that has the usual 2π periodicity. (φ
is the polar angle seen when looking along the axis of the 60◦ or 120◦ cones from above their
apex.) Using φ we can then separate the radial and angular part of the wavefunction as

χ(r, φ) = eijφχ(r) (24)

where j takes half-integer values

j = . . . ,− 3
2 ,− 1

2 , + 1
2 , + 3

2 , . . . . (25)

Note that the hermiticity of the radial part of the differential operator with respect to the
inner product

〈�1|�2〉 def=
∫ 2π

0

∫ ∞

0
�

†
1�2r dr dφ (26)

requires a contribution from the spin-connection term −iσ3/2 that occurs in the angular
covariant derivative part:

−iσ2
1

r

(
∂

∂θ
− i

2
σ3

)
= −iσ2

1

r

∂

∂θ
− i

2r
σ1. (27)

The iσ1/2r ensures that(
−iσ1

∂

∂r
− i

2
σ1

)†
= −iσ1

1

r

∂

∂r
r +

i

2
σ1

= −iσ1
∂

∂r
− i

2
σ1. (28)

7
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Because τ1 commutes with H, we can find solutions to (21) and (23) (without the tilde’s)
of the form

χ+(r, φ) =

⎛
⎜⎜⎝

u(r)

v(r)

u(r)

v(r)

⎞
⎟⎟⎠ eijφ, χ−(r, φ) =

⎛
⎜⎜⎝

u(r)

v(v)

−u(r)

−v(r)

⎞
⎟⎟⎠ eijφ, (29)

which are eigenvectors of τ1 with eigenvalue ±1. The functions u(r), v(r) then satisfy

−i

(
d

dr
+

1

2r
+

1

r

(j ± n/4)

1 − n/6)

)
v + τ�u = Eu,

−i

(
d

dr
+

1

2r
− 1

r

(j ± n/4)

1 − n/6)

)
u − τ�v = Ev.

(30)

Here n = 1 for the 60◦ cone and n = 2 for the 120◦ cone. The number τ = ±1 denotes the
eigenvalue of τ1. Set

ν = j + τn/4

1 − n/6
. (31)

We have continuous-spectrum eigenfunctions with u, v of the form(
u(r)

v(r)

)
=

(
(ε + τ�)Jν−1/2(kr)

ikJν+1/2(kr)

)
, E = ε ≡ +

√
k2 + �2,

(
u(r)

v(r)

)
=

(
ikJν−1/2(kr)

(ε + τ�)Jν+1/2(kr)

)
, E = −ε,

(32)

and also (
u(r)

v(r)

)
=

(
(ε + τ�)J−(ν−1/2)(kr)

−ikJ−(ν+1/2)(kr)

)
, E = ε ≡ +

√
k2 + �2,

(
u(r)

v(r)

)
=

( −ikJ−(ν−1/2)(kr)

(ε + τ�)J−(ν+1/2)(kr)

)
, E = −ε.

(33)

The first set of solutions is finite at the origin when j > 1/2 and the second is finite at the
origin when j < −1/2. For j = 1/2 and τ negative, the upper component of the first set of
solutions diverges at the origin, but no faster than r−1/2, so it is normalizable there. Similarly
the second set is locally normalizable for j = −1/2.

For most values of j and τ , demanding nomalizability is sufficient to select the physically
allowed solutions. When n = 2, however, and for j = 1/2, τ = −1, we have ν = 0. We also
have ν = 0 when j = −1/2, τ = +1. In these cases, the eigenvalue equation becomes

−i

(
d

dr
+

1

2r

)
v + �τu = Eu

−i

(
d

dr
+

1

2r

)
u − �τv = Ev.

(34)

The scattering solutions with E = ±
√

k2 + �2 contain the Bessel function J1/2(kr) =√
2π/kr sin kr and J−1/2(kr) = √

2π/kr cos kr , both of which are normalizable near the
singular point at the origin. The equation is therefore in Weyl’s limit-circle class there,
and some additional boundary condition must be imposed to select a complete, linearly
independent, set of solutions [19].

One reason for the n = 2, 120◦ wedge differing from the n = 1, 60◦ wedge is that that
the cutting and sewing of the graphene sheet in the former case preserves the A–B bipartite

8
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structure of the lattice. There should therefore be a some operator that anti-commutes with
the Hamiltonian. This property is not easy to see in equation (23), but becomes clearer if we
elect to replace the gauge field term with τ3. Then equation (18) defining the single-valued
field �̃(r, θ) becomes

�(r, θ) = exp

{
iπτ3

(
3θ

4π

)}
⊗ exp

{
i
π

3
σ3

(
3θ

4π

)}
�̃(r, θ), (35)

and the eigenvalue equation (23) is replaced by(
−iσ1

(
∂

∂r
+

1

2r

)
− iσ2

1

r

(
3

2

∂

∂φ
+

3i

4
τ3

)
+ �σ3(τ1 cos φ + τ2 sin φ)

)
χ(r, θ) = Eχ(r, θ),

(36)

with antiperiodic χ(r, θ). This is the equation with a unit-winding-number vortex in the
mass term that was considered in [11]. It is formally of the form to which the Jackiw–
Rossi–Weinberg index theorem applies: the matrix-valued differential operator manifestly
anti-commutes with 	 = τ3 ⊗ σ3, and the index is the Hilbert-space trace of 	.

Equation (36) posseses zero energy solutions of the form

χ(r, φ) =

⎛
⎜⎜⎝

e−iφ/2u(r)

0
0

eiφ/2v(r)

⎞
⎟⎟⎠ , χ(r, φ) =

⎛
⎜⎜⎝

0
e−iφ/2v(r)

eiφ/2u(r)

0

⎞
⎟⎟⎠ , (37)

which are eigenvectors of 	 with eigenvalues +1 and −1 respectively. Ignoring any constraints
imposed by boundary conditions they are

�0+− =

⎛
⎜⎜⎝

e−iφ/2

0
0

ieiφ/2

⎞
⎟⎟⎠ 1√

r
e−�r, �0−− =

⎛
⎜⎜⎝

0
ie−iφ/2

eiφ/2

0

⎞
⎟⎟⎠ 1√

r
e−�r, (38)

and

�0++ =

⎛
⎜⎜⎝

ie−iφ/2

0
0

eiφ/2

⎞
⎟⎟⎠ 1√

r
e+�r, �0−+ =

⎛
⎜⎜⎝

0
e−iφ/2

ieiφ/2

0

⎞
⎟⎟⎠ 1√

r
e+�r, (39)

Only one pair will be normalizable, depending on the sign of �.
Equation (36) also posses more general bound-state solutions for any value of E in the

range −|�| < E < |�|. These are

�E,1 =

⎛
⎜⎜⎝

(E + �) eiφ/2

iκ eiφ2

(E + �) e−iφ/2

iκ e−iφ

⎞
⎟⎟⎠ 1√

r
e−κr , �E,2 =

⎛
⎜⎜⎝

(E − �) eiφ

iκ eiφ/2

(� − E) e−iφ/2

−iκ e−iφ/2

⎞
⎟⎟⎠ 1√

r
e−κr (40)

and

�E,3 =

⎛
⎜⎜⎝

(E + �) eiφ/2

−iκ eiφ/2

(E + �) e−iφ/2

−iκ e−φ/2

⎞
⎟⎟⎠ 1√

r
e+κr , �E,4 =

⎛
⎜⎜⎝

(E − �) eiφ/2

−iκ eiφ/2

(� − E) e−iφ/2

iκ e−iφ/2

⎞
⎟⎟⎠ 1√

r
e+κr . (41)

Here κ = √
�2 − E2. These solutions are not eigenfunctions of 	. Instead 	 acts on them to

give a solution with energy −E.
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Both the E = 0 and the more general −|�| < E < |�| solutions are square integrable in
the neighbourhood of r = 0. The same is true of the scattering state solutions with |E| > |�|.
We need to impose some boundary condition at r = 0 to select from these solutions a complete
linearly-independent set. As a guide to the form of this boundary condition we apply the Weyl–
von-Neumann theory [20]. The matrix-valued differential operator determining the radial part
of all these solutions is

H = −iσ1

(
d

dr
+

1

2r

)
+ �τ1 ⊗ σ3, r ∈ [0,∞). (42)

If we restrict it an initial domain that contains only functions that vanish at r = 0, the
resulting linear operator has deficiency indices (2, 2). The restricted operator therefore
admits a four-parameter family of self-adjoint extensions. To determine the corresponding
boundary conditions, we evaluate 〈�|HX〉 − 〈H�|X〉on functions � = (ψ1, ψ2, ψ3, ψ4)

T

and X = (χ1, χ2, χ3, χ4)
T that are square integrable on [0,∞) with the measure r dr . We

find that

〈�|HX〉 − 〈H�|X〉 = [−ir(ψ∗
1 χ2 + ψ∗

2 χ1 + ψ∗
3 χ4 + ψ∗

4 χ3)]
∞
0 . (43)

Since �(r) and X(r) are allowed to diverge as r−1/2 near the origin but must tend to zero
faster than r−2 at infinity, the vanishing of the integrated-out part requires that the expression
in parentheses tend to zero at r = 0. If we impose boundary conditions(

ψ1

ψ3

)
=

(
a b

c d

) (
ψ2

ψ4

)
, r → 0 (44)

on �(r), the adjoint boundary conditions on X(r) are determined by requiring that

lim
r→0

[ψ∗
2 (a∗χ2 + c∗χ4 + χ1) + ψ∗

4 (b∗χ2 + χ3 + d∗χ4)] = 0 (45)

for any ψ2, ψ4. Thus, the adjoint boundary conditions are(
χ1

χ3

)
=

(−a∗ −c∗

−b∗ −d∗

) (
χ2

χ4

)
, r → 0. (46)

For H to be self-adjoint, these boundary conditions must coincide with the boundary conditions
imposed on ψ . We there have that, as r → 0,(

ψ1

ψ3

)
=

(
iA B + iC

−B + iC iD

) (
ψ2

ψ4

)
, (47)

for real (possibly infinite) numbers A,B,C and D. This relation contains the four real
parameters required by the Weyl–von Neumann count, and so is the most general possible
self-adjoint boundary condition.

The numerical solution of the 120◦ wedge-cut lattice shows that there are two exact zero
modes that are localized when � < 0 and become delocalized when � > 0. These modes
can be identified with �0++ and �0−+, and are allowed if we impose the boundary condition(

ψ1

ψ3

)
=

(
0 i
i 0

)(
ψ2

ψ4

)
(48)

at r = 0. The other potential zero modes �0+− and �0−− do not satisfy this condition.
For general values of A,B,C and D, we can seek bound-state solutions of the form

� = α�E,1 + β�E,2.

Imposing the boundary condition (47) at r = 0 leads to a pair of homogeneous equations

(α + β)E + (α − β)� = −Aκ(α + β) − (C − iB)κ(α − β),

(α − β)E + (α + β)� = −Dκ(α − β) − (C + iB)κ(α + β),
(49)
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A=0.0, B=0.0
C=1.0, D=0.0

=-1.0

1.0 0.5 0.5 1.0
E

0.1

0.2

0.3

0.4

0.5

F E

A=0.0, B=0.0
C=1.0, D=1.0

=1.0

1.0 0.5 0.5 1.0
E

4

3

2

1

F E

Figure 3. The left-hand plot shows F(E) for boundary-condition parameters A = B = D =
0, C = 1 and � = −1 which possesses two degenerate zero modes. The right-hand plot shows
F(E) for the same boundary parameters, but with � having changed sign from negative (reduced
hopping in the double bonds) to positive (enhanced hopping on the double bonds). There are now
no bound states.

A=0.0, B=0.0
C=1.0, D=0.5

=-1.0

1.0 0.5 0.5 1.0
E

0.2

0.4

0.6

F E

A=-1.0, B=0.0,
C=Sqrt[2], D=-1.0

=-1.0

1.0 0.5 0.5 1.0
E

0.5

1.0

1.5

2.0

F E

Figure 4. The left-hand figure shows F(E) for A = B = 0, C = 1, D = .5 and � negative.
There is a zero mode and a bound state with E ≈ −0.5|�|. In the right-hand figure we have
A = D = −1.0, B = 0,D = √

2, and � negative. There are two degenerate bound states at
E = |�|/√2. In both cases, the bound states cease to exist as soon as � changes sign from
negative to positive.

for α and β, and hence to the condition F(E) = 0, where

F(E) =
∣∣∣∣ E + Aκ � + (C − iB)κ

� + (C + iB)κ E + Dκ

∣∣∣∣ . (50)

The function F(E) is real in the range −|�| � E � |�|, and always has two zeros at E = ±|�|
corresponding to the edges of the upper and lower continuum respectively. Additional zeros
in the range −|�| < E < |�| correspond to the energies of bound states. Example plots of
F(E) for different values of A,C,D and � are shown in figures 3 and 4. Of particular interest
is the left hand plot in figure 3 which exhibits the pair of E = 0 zero modes for the boundary
conditions in (48), and the right-hand plot in figure 4 which exhibits a pair of degenerate levels
at a non-zero value of E. The plots in figure 4 correspond to non-zero values for one or both
of the parameters A and D. These parameters control the boundary coupling of the A and B
lattices to themselves, and non-zero values violate the bipartite lattice structure that leads to
the E ↔ −E spectral symmetry possessed by the bulk differential equation.
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0.6 0.8 1.0 1.2 1.4
h

−0.4

−0.2

0.0

0.2

0.4

E

Figure 5. The low-lying part of the energy spectrum plotted versus h (the ratio of double bond
hopping to single bond hopping) for a square defect created by excising a 120◦ wedge. The
horizontal axis has been displaced vertically so as to uncover the doubly-degenerate exact zero
mode. The ‘within-gap’ modes peeling off from the upper and lower continua for h > 1 ( i.e.
� > 0) are ‘anti-localized’ edge states, whose exact form depends on how we truncate the lattice
on its outer boundary.

0.8 1.0 1.2 1.4 h

−0.4

−0.2

0.2

0.4

E

0.8 1.0 1.2 1.4
h

−0.6

−0.4

−0.2

0.2

0.4

E

Figure 6. The low-lying energy spectrum plotted versus h for a pair of nearby pentagons. The
left-hand figure is for an (n.m) = (1, 1) cone in the language of [9], and the right-hand figure is for
an (n, m) = (0, 3) cone. In both cases the 60◦ wedges have their apices in single-bond hexagons
so as to preserve the global Kekulé structure. For h < 1 there is a pair of nearly degenerate bound
states lying just below the upper continuum. The ‘below gap’ modes at h > 1 are uninteresting
edge states localized at the outer boundary.

Figures 5–7 show some numerical plots of the low-lying energy states as a function of
h = (t + δt)/t , where δt is the change in hopping parameter on the double bonds (recall that
� = (2/3at)δt .). In all four lattices, the wedges have their apices in single-bond hexagons, so
that the global Kekulé structure is preserved. In the language of [9] they all have n = m mod 3,
ensuring that the asymptotic gauge field is the same in all four cases. The spectra differ,
however, because the boundary conditions seen by the continuum wave functions at the tip of
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0.8 1.0 1.2 1.4
h

−0.4

−0.2

0.2

0.4

E

Figure 7. The low-lying energy spectrum plotted versus h for a pair of pentagons forming a
(n, m) = (0, 6) cone.

the cone are different. In the case of figure 5, the global bipartite structure is preserved, the
boundary conditions are those of equation (48) and so the spectrum is manifestly E ↔ −E

symmetric. In lattices of figures 6 and 7 the bipartite structure is scrambled in the region
between the pentagons and so the E ↔ −E symmetry is violated. All of the two-pentagon
cases display a pair of almost degenerate bound states just below the positive continuum, and
are therefore similar to the spectrum associated with the boundary conditions of the right-hand
plot of figure 4. As h approaches unity, and � approaches zero, the wavefunctions begin to
spread out and see the outer boundary of our large-but-finite lattices (2644 vertices in case of
the square and 1158 vertices for the pair of pentagons). The effects of this can be seen in the
figures in the splitting of the bound-state energies as h approaches unity from below.

4. Conclusions

The continuum Dirac Hamiltonian provides a good account of the low-energy, long-
wavelength, eigenstates of the tight-binding Hamiltonian on an infinite sheet of graphene. The
continuum model is also a useful approximation for cones tipped by curvature singularities
induced by pentagon defects—but it must be supplemented by non-trivial boundary conditions
at the tip of the cone. Although the low-lying eigenfunctions have too long a wavelength to
resolve the fine details of lattice disruption at the tip, they there experience phase shifts and
mode mixing that have a significant effect on the eigenstates. For two separated pentagons, the
scrambling of the A–B bipartite lattice structure along a seam joining the pentagons sufficiently
violates the E ↔ −E spectral symmetry so as to allow bound states at non-zero E. In the
case of two coincident pentagons (i.e. a square) the E ↔ −E symmetry is preserved, but (in
contrast to the quarter-unit flux through a pentagon) the resultant half-unit of flux through the
square plaquette is too large to be approximated by a spread-out gauge field. A continuum
gauge field with this flux would have bound a single state whose eigenvalue of 	 is determined
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by the sign of the flux. The lattice spectrum must be unchanged, however, by the insertion
of an integer flux-quantum through the square. Such an insertion can reverse the sign of the
flux and so no particular sign of 	 can be favoured. The lattice Hamiltonian compromises
by producing two bound states, one with each sign of 	. All these effects can be reproduced
in the continuum model by suitable choices of the parameters in the self-adjoint boundary
conditions. However, the predictions [11] of the continuum Jackiw–Rossi–Weinberg theorem
do not survive in a simple form. It will be interesting to see if the theorem can be modified to
include the effects of the singular endpoint.

Acknowledgments

This work was supported by the National Science Foundation under grant DMR-06-03528.
Some of the work was carried at the KITP in Santa Barbara, and so supported in part by
the National Science Foundation under grant PHY05-51164. We would like to thank Jiannis
Pachos for many discussions, and Jeremy Oon for his assistance with the numerical work at
the beginning of this project.

References

[1] Geim A K and Novoselov K S 2007 Nature Mater. 6 183–91
[2] Wallace P R 1949 Phys. Rev. 71 622–34
[3] Fries K 1927 Justus Liebigs Annalen der Chemie 454 121–324

Fries K, Walter R and Schilling K 1935 Justus Liebigs Annalen der Chemie 516 248–85
[4] Clar E 1972 The Aromatic Sextet (New York: Wiley)
[5] Hou C-Y, Chamon C and Mudry C 2007 Phys. Rev. Lett. 98 186809
[6] Chamon C, Hou C-Y, Jackiw R, Mudry C, Pi S-Y and Semenoff G 2008 Phys. Rev. B 77 235431
[7] Ghaemi P and Wilczek F 2007 arXiv:07092626
[8] Ghaemi P, Ryu S and Lee D-H 2009 arXiv:0903.1662
[9] Lammert P E and Crespi V H 2000 Phys. Rev. Lett. 85 5190

Lammert P E and Crespi V H 2004 Phys. Rev. B 69 035406
[10] Kolesnikov D V and Osipov V A 2006 Eur. Phys. J. B 49 465

Osipov V A and Kochetov E A 2001 JEPT 73 631
[11] Pachos J, Stone M and Temme K 2008 Phys. Rev. Lett. 100 156806
[12] Pachos J K 2009 Contempory Phys. 50 375
[13] Gonzalez J, Guinea F and Vozmediano M A H 1992 Phys. Rev. Lett. 69 172–5
[14] Gonzalez J, Guinea F and Vozmediano M A H 1993 Nucl. Phys. B 406 771–94 [FS5]
[15] Jackiw R and Rossi P 1981 Nucl. Phys. B 190 681
[16] Weinberg E 1981 Phys. Rev. D 24 2669
[17] Fowler P W, Fujita M and Yoshida M 1996 J. Chem. Soc. Faraday Trans. 92 3673–5
[18] Rogers K M and Fowler P W 2001 J. Chem. Soc. Perkin Trans. 2 18–22
[19] Yamagishi H 1983 Phys. Rev. D 27 2383
[20] See for example: Richtmyer R D 1978 Principles of Advanced Mathematical Physics vol I section 8.6. (Berlin:

Springer)

14

http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1002/jlac.19274540108
http://dx.doi.org/10.1002/jlac.19355160117
http://dx.doi.org/10.1103/PhysRevLett.98.186809
http://dx.doi.org/10.1103/PhysRevB.77.235431
http://www.arxiv.org/abs/0903.1662
http://dx.doi.org/10.1103/PhysRevLett.85.5190
http://dx.doi.org/10.1103/PhysRevB.69.035406
http://dx.doi.org/10.1140/epjb/e2006-00087-y
http://dx.doi.org/10.1103/PhysRevLett.100.156806
http://dx.doi.org/10.1080/00107510802650507
http://dx.doi.org/10.1103/PhysRevLett.69.172
http://dx.doi.org/10.1016/0550-3213(93)90009-E
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1103/PhysRevD.24.2669
http://dx.doi.org/10.1039/ft9969203763
http://dx.doi.org/10.1103/PhysRevD.27.2383

	1. Introduction
	2. Planar graphene and the Dirac equation
	3. Geometric defects and their gauge field
	4. Conclusions
	Acknowledgments
	References

